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Abstract
We report on numerical calculations of the distribution of complex Fano
parameters in a mesoscopic system consisting of a waveguide attached to a
disordered cavity. An external magnetic field in the cavity breaks the time-
reversal symmetry. The real and imaginary parts of the parameters as well
as the widths are obtained by fitting the Beutler–Fano form to the calculated
resonance data. The distributions are compared with the predictions from
random matrix theory which have been modified to exclude resonances below
a certain cut-off width.

PACS numbers: 05.45.Pq, 72.10.−d, 73.23.−b

1. Introduction

In recent years, there has been much interest in the study of coherent electron transport in
mesoscopic systems. Resonances in the scattering cross-section or conductance as a function
of energy yield important information about such systems. In particular, the lineshape of the
resonance or the so-called Fano q parameter which determines the shape [1, 2] is very sensitive
to the interference between the different pathways to the final state of the system and hence to
any sources of decoherence.

Fano originally discussed and derived the line shape of a resonance in the context of
photoionization spectra, but it has since been studied in many other contexts, such as scattering
in atomic and molecular physics, quantum optics, microwave resonators [3], mesoscopic
systems [4–6] and other condensed matter systems. The Fano q parameter has mainly been
studied for q real. However, recently interest has focussed on situations where q is complex.
Kobayashi et al [5] showed that in electron transport through a hybrid system consisting of a
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quantum dot in an Aharonov–Bohm ring the magnetic field breaks the time reversal symmetry
(TRS) of the system and the Fano parameter becomes complex. They showed how the real and
imaginary parts of q oscillate with the magnetic field giving a variety of line shapes including
Lorentzians which normally only occur for real q in the limit q → ∞. Complex q values
were also required to interpret the conductance through carbon nanotubes in the presence of
a magnetic field [7]. In addition, Rotter et al [3] had to introduce complex q parameters to
explain the experimental line shapes in microwave transmission through a regular rectangular
shaped resonator or cavity. The q parameter is complex due to decoherence from absorption
in the walls of the resonator which again leads to a breaking in TRS. They also simulated how
decoherence could be introduced by dephasing. In either case complex q values are needed to
interpret the results and, in fact, the size of the complex part of q can be used to measure the
degree of decoherence present in the system.

In this paper, we analyse the behaviour of complex q parameters for resonances in a
chaotic system subject to an external magnetic field which breaks its TRS. In a numerical
experiment we simulate a mesoscopic scattering system, composed of an electron moving in
a waveguide attached to a disordered cavity in the presence of an external magnetic field. The
cavity leads to chaotic motion and hence in addition to being complex the real and imaginary
parts of the q parameters should fluctuate randomly. We calculate the conductance as a
function of energy and hence by fitting the lineshape of each resonance we extract the real
and imaginary parts of the q parameter and the width. We thus obtain the distributions for
the real and imaginary parts of q and the widths. We compare our results with the predicted
theoretical distributions for a system that obeys random matrix theory (RMT) without TRS
[8]. In a recent paper [9], we studied such a system with preserved time-reversal symmetry.
Here, we show the corresponding results for the same system but with broken TRS. We find in
our simulations, as in any real experiment, that there is an effective cut-off width below which
one cannot determine accurately the widths of narrow resonances. This has implications for
the RMT predictions where it is assumed that all widths are included. We show how to adapt
the RMT predictions to account for this cut-off. When this is done we obtain good agreement
between the numerical simulations and the RMT predictions for the distribution of the real
and imaginary parts of q and the widths.

The layout of the paper is as follows. In section 2 we outline the numerical method and
the model. In section 3 we review the analytical predictions based on the RMT. In section 4
we present the results, and in section 5 we give our conclusions.

2. The model and the calculation of the S matrix

We wish to calculate the scattering cross section for an electron moving through a waveguide
attached to a chaotic cavity in the presence of a magnetic field. One possible way to achieve this
is to have an irregular shaped cavity; however, we choose to use a regular shaped cavity and
to introduce disorder through the on-site potentials in a tight binding model. This enables one
to compute ensemble averages in a straightforward manner by varying the on-site potentials.
The system used is illustrated in figure 1.

We approximate the Hamiltonian H of our system with the help of the tight-binding
representation:

H =
∑

k

εkc
†
kck +

∑
kk′

Vkk′c
†
kck′ , (1)

where the subscripts k denote the sites of a square lattice covering the rectangular cavity and
the two-dimensional attached waveguide. c

†
k and ck are the creation and annihilation operators,
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Figure 1. The system is composed of a rectangular cavity with an opening to an infinitely long
electron waveguide. The geometry is discretized by a regular square lattice with m × n + M × N

lattice sites. m is the number of sites connecting the cavity and the waveguide. Each lattice point
is associated with an on-site potential εk and each connection between the points by a hopping
parameter Vkk′ .

corresponding to each site, and εk is the potential energy. The hopping parameters Vkk′ are
set equal to the energy unit, if k and k′ denote the nearest-neighbour sites. Otherwise Vkk′

are zero. The on-site potentials εk are uniformly distributed in the range [4 − W/2, 4 + W/2]
inside the cavity and on the sites across the opening between the cavity and the waveguide,
whereas εk = 4 elsewhere. W , the disorder strength, is a constant.

To introduce the external magnetic field we apply periodic boundary conditions in the
cavity in the horizontal direction (parallel to the waveguide), and multiply those hopping
parameters, which connect two adjacent sites in this direction (inside the cavity), by a Peierls
phase factor exp(±2π iφ/M), where φ is the (unitless) magnetic flux and M is the length of
the cavity in the units of the lattice spacing [10]. Here, we set φ = 1/4.

For this model we calculate the scattering matrix S as a function of energy with the help
of the tight-binding Green function algorithm [11]. The energy range is chosen between
the first and second threshold energies of the waveguide, so that S becomes a 2 × 2 matrix.
One sample system is obtained for each set of random on-site potentials, and the S matrix
is calculated for a large ensemble of samples. The optical scattering matrix S̄ is obtained
as the ensemble average of the S matrix, and the parameters q and � for each resonance are
determined by fitting a Lorentzian profile to the numerical data for the resonant transmission
amplitudes tr = [S − S̄]12 (see below). One must be careful to choose the ensemble such that
S̄ is the same for each sample, which means that the energy interval must be narrow and the
on-site potentials in and near the waveguide do not fluctuate from sample to sample (they may
fluctuate from site to site, though).

3. Review of RMT theory for the distribution of complex q parameters

In the scattering of a single electron through a waveguide attached to a mesoscopic cavity,
Beutler–Fano resonance profiles are seen due to the interference between ‘resonant’ and
‘non-resonant’ transmission paths along the waveguide. Here, we assume that the resonant
paths enter the cavity and explore it ergodically before re-entering the waveguide. The



5860 V Uski et al

non-resonant paths, on the contrary, pass the cavity or enter it for a time shorter than the
ergodic time. The transmission amplitude t can be written as a sum of the resonant and non-
resonant contributions t = tr + tn. The resonant contribution tr is determined by the coupling
of the discrete energy levels of a closed cavity and the continuum spectrum of the waveguide
[12]. Due to the coupling, the discrete energy levels become resonances and their amplitudes
can be represented in a Lorentzian form. The non-resonant contribution tn is independent of
the discrete energy levels of the cavity, and is therefore a slowly varying function of energy.
By assuming that it is a constant over the resonance region, one obtains the Beutler–Fano form
for the resonance lineshape,

g(E) = |t |2 = |tn|2 |2(E − E0) + q�|2
4(E − E0)2 + �2

, (2)

where g(E) is the dimensionless conductance, E0 the resonance position, � is the resonance
width and q is the Fano parameter.

� and q fluctuate according to the statistical properties of the eigenstates of the cavity,
which in the ergodic regime follows the predictions of RMT. The distributions are parametrized
by the mean level spacing � of energy levels belonging to the closed cavity, and the optical
scattering matrix S̄, which is a sum of the contributions from the direct paths passing the
cavity. In the single-channel case considered here, S̄ is a subunitary 2 × 2 matrix, and can be
decomposed as follows:

S̄ = U
√

1 − T UT, (3)

where U is a 2 × 2 unitary matrix and T = diag(T1, T2). Equation (3) is known as the
Engelbrecht–Weidenmueller transformation [13]. The parameters T1 and T2 are called
the sticking probabilities [14], and they represent the probability for the electron to enter
the ergodic paths from the ‘eigenmodes’ given by the columns of the matrix U. S̄ is here
assumed to be symmetric, meaning that the TRS is preserved in the direct (non-resonant)
scattering.

In the absence of TRS in the resonant scattering, the Fano parameters are complex. We
denote q = q1 + iq2, where q1, q2 are real. Clerk et al [8] derived the distribution for the
complex q parameter using RMT. (See [8] for details.) The RMT prediction is

P(q̃1, q̃2) = 1 + α

2π

√
1 − q̃2

1 − q̃2
2

[1 + α(1 − q̃1q̃a)/2]2 + α2
(
1 − q̃2

1 − q̃2
2

)(
1 − q̃2

a

)/
4{

1 + α2
[
(q̃1 − q̃a)2 + q̃2

2 − q̃2
2 q̃2

a

]/
4 + α(1 − q̃1q̃a)

}2 (4)

where α = T2/T1 − 1, q̃1 = q1
/
qmax

1 , q2 = q2
/
qmax

2 , q̃a = qa

/
qmax

1 and qmax
1 =

√(
qmax

2

)2 − 1.

The maximum real part is given by qmax
1 =

√
|tn|−2 − 1. The parameter qa is defined as

qa = i(U11U21 − U22U12)/(U11U21 + U22U12) (5)

and is real due to the unitarity of U. Equation (4) applies in the one-channel case, i.e., when
there is only one propagating mode in the waveguide.

The distribution of the resonance widths can be deduced from RMT (see [8]), since
� ∝ |ψ |2 with a Gaussian random complex ψ , and is given by

P(�) = (�1 − �2)
−1[exp(−�/�1) − exp(−�/�2)], (6)

where �i = Ti�/2π for i = 1, 2. This formula is valid in the case of isolated resonances.
In real (and numerical) experiments, resonances may be missed for a variety of reasons

introducing a bias into the width distributions. In an experiment, absorption can lead to line
broadening and to an increase in overlapping resonances which merge with the background
or alternatively weak coupling to the measured channel may lead one to miss such weak
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resonances. The effect of missing resonances on the statistics of the resonances has been
studied recently. Agvaanluvsan et al [15] have discussed both how to adapt the Porter–Thomas
distribution for the widths when one has to introduce a cut-off for missing widths and how to
adapt the nearest neighbour distributions for the positions of the resonances when a fraction of
them are missing. Similar studies have been carried out for microwave resonator experiments
[16, 17]. In addition, Bohigas and Pato [18] have shown that if the fraction of missing levels
is known one can find the statistical properties of the full spectrum or if the statistics of the
complete spectrum is known one can find the fraction of missing levels. In our single channel
system, by choosing the coupling parameters, we can control many of the possible causes for
missing resonances. For example, since the resonance widths � are much smaller than the
mean-level spacing �, overlapping resonances do not play a significant role [8]. The main bias
in our width distribution is due to the difficulty in locating all of the very narrow resonances
reliably. This ‘bias’ in sampling will be visible in the q distribution as well, as pointed out
in [9]. To simulate the effect of the bias on the RMT statistics, we introduced, as in [15], a
simple cut-off �c > 0 such that P(�) = 0 for all � < �c. We then numerically simulated
the RMT distribution for the q parameter with a cut-off width distribution by calculating the
resonant part of the scattering matrix using wavefunction amplitudes chosen randomly from
a normal distribution and excluding those resonances for which � < �c. We checked that we
recover the theoretical distribution in equation (4) when we choose �c = 0.

4. Results

We calculated the scattering matrix for the model with the disorder strength W = 1.0, φ = 0.25
and energy E ≈ 0.25 and for a distribution of energies εk in equation (1). This energy is near
the band edge E = 0, so there is only one channel open in the waveguide, i.e., we consider the
single-mode case, as in [9]. We take M = 53, N = 20, n = 10,m = 3. With these values the
statistical properties of the Hamiltonian for the closed cavity follow the predictions of RMT
for the Gaussian unitary ensemble, which is the assumption used in applying RMT theory to
the open system. For the mean level spacing �, we obtained � ≈ 0.01.

The width � and q parameter for a given resonance are calculated as follows. The total
phase shift δ(E) in the vicinity of an isolated resonance can be written as

δ(E) = arctan

(
E − E0

1
2�

)
+ δbg(E), (7)

where δbg(E) is the background phase shift. The resonance width � and position E0 were
determined by fitting this phase shift sum to the numerically determined phase shift, as seen
in figure 2 [19].

The transmission amplitude t can be written as

t = tn + tr = tn +
zr�

2(E − E0) + i�
(8)

where zr is the excitation amplitude. The Fano parameter is

q = i + zr/tn. (9)

So by fitting the calculated real and imaginary parts of t as in figure 2, one can extract zr and
hence obtain q.

This is done for 30 000 different realizations of εk and the above fitting procedure is
implemented for each individual resonance allowing us to calculate the statistical distribution
of widths and complex q parameters for our system.
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Figure 2. Example resonance. Left: the phase shift as a function of energy (circles) and the fitted
Breit–Wigner form. The fit gives the position of the resonance E0 and the width �. Right: real
and imaginary parts of the transmission amplitude as a function of energy. The lines show the fit
to the data using equation (8). The fit gives the complex Fano parameter q.
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Figure 3. Histogram of the resonance widths. The smooth line shows equation (6) with �1/� =
1.2 × 10−4 and �2/� = 2.5 × 10−3, a cut-off at �/� = 2.0 × 10−3 and with a proper
renormalization due to the cut-off.

Figure 3 shows the histogram of the obtained resonance widths, compared with the RMT
prediction (6). The widths are clearly much smaller than �, so it was reasonable to assume
that the resonances are isolated. We have cut off the width distribution at �c/� = 2.0 × 10−3,
where it becomes clear that the narrow widths are under represented. Above this threshold
width, there is no statistical error in the resonance searching procedure and the histogram is
an excellent agreement with the RMT prediction.

Figure 4 shows separate histograms for the distribution of the real parts and the imaginary
parts of the Fano parameter. The numerical data are compared with the RMT prediction (4)
both with and without a cut-off. The cut-off reduces the probability of finding large Fano
parameters accompanied by an increase in the probability of finding small values. Hence the
distributions become more peaked but have their peaks at the same values. The agreement
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Figure 4. The histograms show the distribution of Fano parameters P(q1), where q1 is the real
part of q, and P(q2) with q2 the imaginary part. The smooth solid lines show the RMT prediction
obtained from equation (4) got by integrating out the imaginary and real parts of the full distribution
respectively with parameters α = 20 and qa = 0.094. The smooth dashed lines show the RMT
distributions obtained, when the cut-off at �/� = 2.0×10−3 is taken into account. The histograms
have been calculated with the same cut-off.

between the data and the cut-off RMT theory is in general very good for both the real and
imaginary parts although the peak in the imaginary part is slightly higher than the predicted
value. The RMT theory without a cut-off does not fit the numerical data as is shown in the
figure. If we increase the cut-off value we do not find any qualitative difference between
the level of agreement between RMT theory and the data. Note that the RMT prediction
equation (4) gives a distribution which is symmetric about zero for the distribution of the
imaginary parts. However, the simulated data have a slight asymmetry with a lower tail
for large positive imaginary parts. This accentuates the differences in the peak values as
the distribution has to be normalized. There is a slight shift also between theory and the
simulation for the distribution of real parts but this does not have such a pronounced effect
on the peak value as the shape of the two distributions is the same. These small differences
are understandable in that RMT predictions cannot be found exactly in a finite sample size
simulation.

5. Conclusions

We have studied numerically the distribution of widths and complex Fano q parameters for
a chaotic scattering system with broken time-reversal symmetry by extracting the widths
and q parameters from the calculated phase shifts and transmission amplitudes. We have
checked that our model satisfies the main criteria assumed in RMT and we have compared the
numerical q histograms for both real and imaginary parts for a system with broken TRS to the
theoretical predictions from RMT. The RMT prediction depends on a set of parameters related
to the background scattering matrix. These have been determined and very good agreement is
obtained between the RMT theory and the calculated distribution when a cut-off is introduced
to eliminate resonances with small widths.
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